Technical Research in Advanced Air Transportation Concepts & Technologies

Task Order 54

Investigation of Implementation Sites for Multi-center Traffic Management Advisor (McTMA)

AATT Decision Support Tool

Introduction

- Background
- Task requirements
- Task description
- Selection criteria

Background

- Advance air transportation technologies (AATT)
- Improve overall performance on the NAS
- Developing decision support tools (DSTs)
- DSTs grouped with FAA free flight phase 2 (FFP2)
- Multi-center traffic management advisor (McTMA) is planned to be part of FFP2
- McTMA will be initially standalone DST
- Mature McTMA will be integrated into a multi-center environment.
- Life-cycle cost/benefits require an implementation scheme

Task Requirements

- Results serve two group at NASA Ames: AATT Benefits Assessors and McTMA Tool Developers
- Determine which TRACONs are multi-center facilities
- Thoroughly researched and documented by ARTS equipment
- Primary FAA support HQ FFP1 Program Office and AOS-400 at the FAA
 Technical Center
- Develop selection criteria for McTMA implementation
 - facility operational requirements
 - ARTCC/TRACON boundaries
 - airspace complexity
 - airport capacity/delay
 - weather phenomena

Task Description

- Task 1 Initial meeting at NASA Ames to further refine methodology for data collection
 - Define sources where NASA may be able to facilitate or coordinate access to information
- Task 2 Application of a methodology to search for multi-center TRACONs
 - A preliminary list of sites, selection criteria for each and supporting data was delivered to the NASA TM
- Task 3 Provide a final report and develop an informal presentation of the final results
 - Results included the selection criteria and both a hard and soft copy of all data collected

Facility Operational Requirements

- FAA assigns a numerical rating or classification level to all air traffic facilities
- Computed on a weighted hourly index of air traffic
- Numerical value represents facilities functionality across a broad spectrum of different operational postures
- Directly reflects controller skill application and facility complexity
- Current forecast predicted a annual growth rate of approximately
 2.8 percent for the period 2000 2001
- In general terms, higher service levels indicates more air traffic handled

ARTCC/TRACON Boundaries

- Lateral and longitudinal boundaries are important
- Clearly defined arrival and departure profiles
- Distances up to 200 nm routinely used in single-center TMA alignment
- Overlapping airspace boundaries between Center and TRACON considerable
- ARTS must be able to handle both host and non-host data
- Adaptation for each facility must be determined
- No single measure to qualify TRACONs by boundaries

Airspace Complexity

- Operational posture is an important element
- McTMA at multi-center TRACONs should be determined based on airspace complexity during FFP2 – 2003
- Airspace complexity issues to include: demand, airspace redesign,
 ATC procedures, support systems, logistics, labor, and certification
- Isolate airspace in a terminal environment by geographical area in lieu of treating each airport as an individual part
- Should be considered as a key element in determining an implementation scheme for McTMA

Airport Capacity/Delay

- Measure individual airport capacity
- Examine aircraft delay for designated carrier operations
- Routine delay is normally an indicator of a high volume facility
- Normal delay range from 7 to 13 percent of the total traffic count for most medium to large size metropolitan airports
- Review FAA's Aviation Capacity Enhancement Plan
- Introduction of McTMA could notably improve system operability at designated airports

Weather Phenomena

- Weather phenomena variable with impact on the ATC system that can not be specifically forecast
- Use previous years statistics
- Compare percentage of IFR versus VFR days
- Apply to arrival and departure data to derive assessment impact
- Not all weather can be circumvented by improved DSTs
- Inclusion of DSTs could enhance operability and maintain an airports runway acceptance in certain conditions

Implementation Methodology

- Current filter identifies only "true" multi-center TRACONs
- Selection criteria must be further refined by AATT Benefits Assessors and McTMA Tool Developers
- Weighted measures must be applied to selection criteria
- Determine level of importance considering dynamics of the National Airspace System at each location
- Assess air traffic forecast for FFP1 and FFP2 timeframes
- Add filters to identify and implement a strategy for McTMA deployment to multi-center TRACONs
- Prioritize implementation scheme on what NASA and/or FAA perceives appropriate, include operational needs of each facility

Multi-center TRACONS Sort by FAA Facility Level

Multi-center TRACONS Sort by FAA Region

Multi-center TRACONS Sort by FAA Primary ARTCC

Multi-center TRACONs Sort by FAA Operational Support Facility (OSF)

Air Route Traffic Control Centers (ARTCCs)

